This commit is contained in:
Nils Pukropp
2024-09-16 21:02:27 +02:00
commit b907cb789e
83 changed files with 5845 additions and 0 deletions

125
Tutorium/tut05/README.md Normal file
View File

@ -0,0 +1,125 @@
# Tutorium 05 - 17.11.2023
## Korrektur [Exercise-04](https://proglang.informatik.uni-freiburg.de/teaching/info1/2023/exercise/sheet04.pdf)
### Punkteverteilung
![img not found](./img/pointdistribution_exercise04.png)
### Häufige Fehler
- Type Annotations
- Print-Statements, Top-Level Statements in Logik/nicht in
```python
if __name__ == "__main__":
assert # some test
```
- Ich kann euch prinzipiell immer 0 Punkte geben wenn Ihr etwas verwendet, was nicht Teil der Vorlesung war
- Lest die Aufgabenstellungen/Hinweise auf dem Blatt
- Benennt eure Dateien/Methoden richtig
## Vorrechnen
1. `lists.py`
- a) `even`: no43
- b) `min`: cl393
- c) `max`: mt367
2. `euler.py`
- a) `fac`: au56
- b) `approx_e`: rw208
3. `binary.py`
- a) `to_num`: ua28
- b) `stream_to_nums`: md489
## [Exercise-05](https://proglang.informatik.uni-freiburg.de/teaching/info1/2023/exercise/sheet05.pdf)
- Abgabe Montag 09:00 Uhr im [git](https://git.laurel.informatik.uni-freiburg.de/)
- Probleme beim installieren von `pygame`?
## Übungsaufgaben
### [Primes](./src/primes.py)
Schreibe eine Funktion `prime_factorization` die eine Ganzzahl `n` entgegen nimmt und alle Primfaktoren berrechnet und die gegebene Zahl `n` in einen Paar mit den Primfaktoren als Liste zurückgibt. Denkt dabei an die richtigen Type Annotations
```python
def prime_factorization(n):
pass
```
### [Dataclass](./src/data_classes.py)
Schreiben Sie eine Datenklasse `Fraction` (Bruch), beachten Sie dabei die Type Annotations. Ein Bruch besteht aus einem `divident` und einem `divisor`.
```python
from dataclasses import dataclass
@dataclass
class Fraction:
pass
```
Nun modellieren wir Hilfsmethoden für unsere Datenklassen, die uns später bei der Logik von Brüchen helfen
```python
# the greatest common divisor of two numbers `a`, `b`
def gcd(a, b):
pass
# this shortens a fraction to its most reduced representation
def shorten_fraction(fraction):
pass
```
Abschließend modellieren wir nun auch noch das Verhalten von Brüchen indem wir Methoden direkt in der Datenklasse erstellen. Type Annotations!
```python
# Multiplication of two fractions
# `Fraction(1 / 2) * Fraction(2 / 6) -> Fraction(1, 6)`
# Extra: make it possible to multiply `int` with a fraction
# `Fraction(1 / 2) * 2 -> Fraction(1 / 4)`
def __mul__(self, o):
pass
# The division of two fraction
# `Fraction(1 / 2) / Fraction(2 / 6) -> Fraction(3, 2)`
# Extra: make it possible to divide `int` with a fraction
# `Fraction(1 / 4) / 2 -> Fraction(1 / 2)`
def __truediv__(self, o):
pass
# The negative of a fraction
# `-Fraction(1 / 2) -> Fraction(-1 / 2)`
def __neg__(self):
pass
# The addition of two fractions
# `Fraction(1 / 4) + Fraction(2 / 8) -> Fraction(1 / 2)`
# Extra: make it possible to add `int` with a fraction
# `Fraction(1 / 4) + 1 -> Fraction(5 / 4)`
def __add__(self, o):
pass
# The subtraction of two fractions
# `Fraction(1 / 2) - Fraction(1 / 4) -> Fraction(1 / 4)`
# Extra: make it possible to subtract `int` with a fraction
# `Fraction(5 / 2) - 1 -> Fraction(3 / 2)`
def __sub__(self, o):
pass
# The `equal`-function is == and should only care about reduced fractions
# `Fraction(1 / 2) == Fraction(2 / 4)` is True
def __eq__(self, o):
pass
# The `not equal`-function is != and should only care about reduced fractions exactly as equal
def __neq__(self, o):
pass
# The str function should return this string `(divident / divisor)`
def __str__(self):
pass
```

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB

View File

@ -0,0 +1,88 @@
from dataclasses import dataclass
def gcd(a: int, b: int) -> int:
x = abs(a)
y = abs(b)
while (y):
x, y = y, x % y
return x
def shorten_fraction(fraction: 'Fraction') -> 'Fraction':
g: int = gcd(fraction.divident, fraction.divisor)
return Fraction(fraction.divident // g, fraction.divisor // g)
@dataclass
class Fraction:
divident: int
divisor: int
def __neg__(self: 'Fraction') -> 'Fraction':
return -1 * self
def __mul__(self: 'Fraction', o: 'Fraction | int') -> 'Fraction':
if isinstance(o, int):
o = Fraction(o, 1)
return shorten_fraction(Fraction(self.divident * o.divident,
self.divisor * self.divisor))
def __rmul__(self: 'Fraction', o: 'Fraction | int') -> 'Fraction':
return self * o
def __truediv__(self: 'Fraction', o: 'Fraction | int') -> 'Fraction':
if isinstance(o, int):
o = Fraction(o, 1)
return shorten_fraction(Fraction(self.divident * o.divisor,
self.divisor * o.divident))
def __rtruediv___(self: 'Fraction', o: 'Fraction | int') -> 'Fraction':
return self / o
def __add__(self: 'Fraction', o: 'Fraction | int') -> 'Fraction':
if isinstance(o, int):
o = Fraction(o, 1)
g: int = gcd(self.divisor, o.divisor)
l: int = abs(self.divisor * o.divisor) // g
return shorten_fraction(Fraction(self.divident
* (l // self.divisor)
+ o.divident
* (l // o.divisor), l))
def __radd__(self: 'Fraction', o: 'Fraction | int') -> 'Fraction':
return self + o
def __sub__(self: 'Fraction', o: 'Fraction | int') -> 'Fraction':
if isinstance(o, int):
o = Fraction(o, 1)
return self + -o
def __rsub__(self: 'Fraction', o: 'Fraction | int') -> 'Fraction':
return self - o
def __eq__(self: 'Fraction', o: 'Fraction | int') -> bool:
if isinstance(o, int):
o = Fraction(o, 1)
shorten_self: 'Fraction' = shorten_fraction(self)
shorten_o: 'Fraction' = shorten_fraction(o)
return (shorten_self.divident == shorten_o.divident
and shorten_self.divisor == shorten_o.divisor)
def __neq__(self: 'Fraction', o: 'Fraction | int') -> bool:
return not (self == o)
def __str__(self: 'Fraction'):
return f"({self.divident} / {self.divisor})"
if __name__ == "__main__":
assert Fraction(1, 1) == 1
assert Fraction(1, 2) == (out := Fraction(2, 4) /
Fraction(g := gcd(2, 4), g)), f"!= {out}"
assert (sol := Fraction(9, 20)) == (
res := Fraction(1, 5) + Fraction(1, 4)), f"!= {out}"
assert (sol := Fraction(-9, 20)) == (
res := Fraction(1, -5) + Fraction(-1, 4)), f"!= {out}"
assert (sol := Fraction(-1, 20)) == (
res := Fraction(1, 5) + Fraction(-1, 4)), f"!= {out}"

View File

@ -0,0 +1,34 @@
def prime_factorization(num: int) -> tuple[int, list[int]]:
# our list of primefactors
primefactors: list[int] = []
# our first prime number
prime: int = 2
# we don't want to modify our number and copy it to `n`
n: int = num
# iterate until we find the last step the square of
# our prime is bigger than our rest number
while n != 1:
# if our number is dividable by our prime
if n % prime == 0:
# we can add the prime to our primefactors
primefactors.append(prime)
# and divide our rest number by the prime number
n //= prime
else:
# increment until next prime number
prime += 1
# finally return our tuple with our number and primefactors
return (num, primefactors)
if __name__ == "__main__":
assert (sol := (100, [2, 2, 5, 5])) == (
res := prime_factorization(100)), f"{res} is not {sol}"
assert (sol := (69, [3, 23])) == (
res := prime_factorization(69)), f"{res} is not {sol}"
assert (sol := (31, [31])) == (
res := prime_factorization(31)), f"{res} is not {sol}"
assert (sol := (123490823022, [2, 3, 3, 3, 3, 7, 7, 7, 1123, 1979])) == (
res := prime_factorization(123490823022)), f"{res} is not {sol}"

View File

@ -0,0 +1,68 @@
from dataclasses import dataclass
# the greatest common divisor of two numbers `a`, `b`
def gcd(a, b):
pass
# this shortens a fraction to its most reduced representation
def shorten_fraction(fraction):
pass
@dataclass
class Fraction:
# Multiplication of two fractions
# `Fraction(1 / 2) * Fraction(2 / 6) -> Fraction(1, 6)`
# Extra: make it possible to multiply `int` with a fraction
# `Fraction(1 / 2) * 2 -> Fraction(1 / 4)`
def __mul__(self, o):
pass
# The division of two fraction
# `Fraction(1 / 2) / Fraction(2 / 6) -> Fraction(3, 2)`
# Extra: make it possible to divide `int` with a fraction
# `Fraction(1 / 4) / 2 -> Fraction(1 / 2)`
def __truediv__(self, o):
pass
# The negative of a fraction
# `-Fraction(1 / 2) -> Fraction(-1 / 2)`
def __neg__(self):
pass
# The addition of two fractions
# `Fraction(1 / 4) + Fraction(2 / 8) -> Fraction(1 / 2)`
# Extra: make it possible to add `int` with a fraction
# `Fraction(1 / 4) + 1 -> Fraction(5 / 4)`
def __add__(self, o):
pass
# The subtraction of two fractions
# `Fraction(1 / 2) - Fraction(1 / 4) -> Fraction(1 / 4)`
# Extra: make it possible to subtract `int` with a fraction
# `Fraction(5 / 2) - 1 -> Fraction(3 / 2)`
def __sub__(self, o):
pass
# The `equal`-function is == and should only care about reduced fractions
# `Fraction(1 / 2) == Fraction(2 / 4)` is True
def __eq__(self, o):
pass
# The `not equal`-function is != and should only care about reduced fractions exactly as equal
def __neq__(self, o):
pass
# The str function should return this string `(divident / divisor)`
def __str__(self):
pass