done exrcises
This commit is contained in:
@ -40,9 +40,7 @@
|
|||||||
|
|
||||||
## Übungsaufgaben
|
## Übungsaufgaben
|
||||||
|
|
||||||
### Annotations
|
### [Primes](./src/primes.py)
|
||||||
|
|
||||||
#### [Primes](./src/primes.py)
|
|
||||||
|
|
||||||
Schreibe eine Funktion `prime_factorization` die eine Ganzzahl `n` entgegen nimmt und alle Primfaktoren berrechnet und die gegebene Zahl `n` in einen Paar mit den Primfaktoren als Liste zurückgibt. Denkt dabei an die richtigen Type Annotations
|
Schreibe eine Funktion `prime_factorization` die eine Ganzzahl `n` entgegen nimmt und alle Primfaktoren berrechnet und die gegebene Zahl `n` in einen Paar mit den Primfaktoren als Liste zurückgibt. Denkt dabei an die richtigen Type Annotations
|
||||||
|
|
||||||
@ -51,6 +49,77 @@ def prime_factorization(n):
|
|||||||
pass
|
pass
|
||||||
```
|
```
|
||||||
|
|
||||||
#### [Dataclass](./src/data_classes.py)
|
### [Dataclass](./src/data_classes.py)
|
||||||
|
|
||||||
|
Schreiben Sie eine Datenklasse `Fraction` (Bruch), beachten Sie dabei die Type Annotations. Ein Bruch besteht aus einem `divident` und einem `divisor`.
|
||||||
|
|
||||||
|
```python
|
||||||
|
from dataclasses import dataclass
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class Fraction:
|
||||||
|
pass
|
||||||
|
```
|
||||||
|
|
||||||
|
Nun modellieren wir Hilfsmethoden für unsere Datenklassen, die uns später bei der Logik von Brüchen helfen
|
||||||
|
|
||||||
|
```python
|
||||||
|
# the greatest common divisor of two numbers `a`, `b`
|
||||||
|
def gcd(a, b):
|
||||||
|
pass
|
||||||
|
|
||||||
|
# this shortens a fraction to its most reduced representation
|
||||||
|
def shorten_fraction(fraction):
|
||||||
|
pass
|
||||||
|
```
|
||||||
|
|
||||||
|
Abschließend modellieren wir nun auch noch das Verhalten von Brüchen indem wir Methoden direkt in der Datenklasse erstellen. Type Annotations!
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Multiplication of two fractions
|
||||||
|
# `Fraction(1 / 2) * Fraction(2 / 6) -> Fraction(1, 6)`
|
||||||
|
# Extra: make it possible to multiply `int` with a fraction
|
||||||
|
# `Fraction(1 / 2) * 2 -> Fraction(1 / 4)`
|
||||||
|
def __mul__(self, o):
|
||||||
|
pass
|
||||||
|
|
||||||
|
# The division of two fraction
|
||||||
|
# `Fraction(1 / 2) / Fraction(2 / 6) -> Fraction(3, 2)`
|
||||||
|
# Extra: make it possible to divide `int` with a fraction
|
||||||
|
# `Fraction(1 / 4) / 2 -> Fraction(1 / 2)`
|
||||||
|
def __truediv__(self, o):
|
||||||
|
pass
|
||||||
|
|
||||||
|
# The negative of a fraction
|
||||||
|
# `-Fraction(1 / 2) -> Fraction(-1 / 2)`
|
||||||
|
def __neg__(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
# The addition of two fractions
|
||||||
|
# `Fraction(1 / 4) + Fraction(2 / 8) -> Fraction(1 / 2)`
|
||||||
|
# Extra: make it possible to add `int` with a fraction
|
||||||
|
# `Fraction(1 / 4) + 1 -> Fraction(5 / 4)`
|
||||||
|
def __add__(self, o):
|
||||||
|
pass
|
||||||
|
|
||||||
|
# The subtraction of two fractions
|
||||||
|
# `Fraction(1 / 2) - Fraction(1 / 4) -> Fraction(1 / 4)`
|
||||||
|
# Extra: make it possible to subtract `int` with a fraction
|
||||||
|
# `Fraction(5 / 2) - 1 -> Fraction(3 / 2)`
|
||||||
|
def __sub__(self, o):
|
||||||
|
pass
|
||||||
|
|
||||||
|
# The `equal`-function is == and should only care about reduced fractions
|
||||||
|
# `Fraction(1 / 2) == Fraction(2 / 4)` is True
|
||||||
|
def __eq__(self, o):
|
||||||
|
pass
|
||||||
|
|
||||||
|
# The `not equal`-function is != and should only care about reduced fractions exactly as equal
|
||||||
|
def __neq__(self, o):
|
||||||
|
pass
|
||||||
|
|
||||||
|
# The str function should return this string `(divident / divisor)`
|
||||||
|
def __str__(self):
|
||||||
|
pass
|
||||||
|
```
|
||||||
|
88
Tutorium/tut05/src/data_classes.py
Normal file
88
Tutorium/tut05/src/data_classes.py
Normal file
@ -0,0 +1,88 @@
|
|||||||
|
from dataclasses import dataclass
|
||||||
|
|
||||||
|
|
||||||
|
def gcd(a: int, b: int) -> int:
|
||||||
|
x = abs(a)
|
||||||
|
y = abs(b)
|
||||||
|
while (y):
|
||||||
|
x, y = y, x % y
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
def shorten_fraction(fraction: 'Fraction') -> 'Fraction':
|
||||||
|
g: int = gcd(fraction.divident, fraction.divisor)
|
||||||
|
return Fraction(fraction.divident // g, fraction.divisor // g)
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class Fraction:
|
||||||
|
divident: int
|
||||||
|
divisor: int
|
||||||
|
|
||||||
|
def __neg__(self: 'Fraction') -> 'Fraction':
|
||||||
|
return -1 * self
|
||||||
|
|
||||||
|
def __mul__(self: 'Fraction', o: 'Fraction | int') -> 'Fraction':
|
||||||
|
if isinstance(o, int):
|
||||||
|
o = Fraction(o, 1)
|
||||||
|
return shorten_fraction(Fraction(self.divident * o.divident,
|
||||||
|
self.divisor * self.divisor))
|
||||||
|
|
||||||
|
def __rmul__(self: 'Fraction', o: 'Fraction | int') -> 'Fraction':
|
||||||
|
return self * o
|
||||||
|
|
||||||
|
def __truediv__(self: 'Fraction', o: 'Fraction | int') -> 'Fraction':
|
||||||
|
if isinstance(o, int):
|
||||||
|
o = Fraction(o, 1)
|
||||||
|
return shorten_fraction(Fraction(self.divident * o.divisor,
|
||||||
|
self.divisor * o.divident))
|
||||||
|
|
||||||
|
def __rtruediv___(self: 'Fraction', o: 'Fraction | int') -> 'Fraction':
|
||||||
|
return self / o
|
||||||
|
|
||||||
|
def __add__(self: 'Fraction', o: 'Fraction | int') -> 'Fraction':
|
||||||
|
if isinstance(o, int):
|
||||||
|
o = Fraction(o, 1)
|
||||||
|
g: int = gcd(self.divisor, o.divisor)
|
||||||
|
l: int = abs(self.divisor * o.divisor) // g
|
||||||
|
return shorten_fraction(Fraction(self.divident
|
||||||
|
* (l // self.divisor)
|
||||||
|
+ o.divident
|
||||||
|
* (l // o.divisor), l))
|
||||||
|
|
||||||
|
def __radd__(self: 'Fraction', o: 'Fraction | int') -> 'Fraction':
|
||||||
|
return self + o
|
||||||
|
|
||||||
|
def __sub__(self: 'Fraction', o: 'Fraction | int') -> 'Fraction':
|
||||||
|
if isinstance(o, int):
|
||||||
|
o = Fraction(o, 1)
|
||||||
|
return self + -o
|
||||||
|
|
||||||
|
def __rsub__(self: 'Fraction', o: 'Fraction | int') -> 'Fraction':
|
||||||
|
return self - o
|
||||||
|
|
||||||
|
def __eq__(self: 'Fraction', o: 'Fraction | int') -> bool:
|
||||||
|
if isinstance(o, int):
|
||||||
|
o = Fraction(o, 1)
|
||||||
|
shorten_self: 'Fraction' = shorten_fraction(self)
|
||||||
|
shorten_o: 'Fraction' = shorten_fraction(o)
|
||||||
|
return (shorten_self.divident == shorten_o.divident
|
||||||
|
and shorten_self.divisor == shorten_o.divisor)
|
||||||
|
|
||||||
|
def __neq__(self: 'Fraction', o: 'Fraction | int') -> bool:
|
||||||
|
return not (self == o)
|
||||||
|
|
||||||
|
def __str__(self: 'Fraction'):
|
||||||
|
return f"({self.divident} / {self.divisor})"
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
assert Fraction(1, 1) == 1
|
||||||
|
assert Fraction(1, 2) == (out := Fraction(2, 4) /
|
||||||
|
Fraction(g := gcd(2, 4), g)), f"!= {out}"
|
||||||
|
assert (sol := Fraction(9, 20)) == (
|
||||||
|
res := Fraction(1, 5) + Fraction(1, 4)), f"!= {out}"
|
||||||
|
assert (sol := Fraction(-9, 20)) == (
|
||||||
|
res := Fraction(1, -5) + Fraction(-1, 4)), f"!= {out}"
|
||||||
|
assert (sol := Fraction(-1, 20)) == (
|
||||||
|
res := Fraction(1, 5) + Fraction(-1, 4)), f"!= {out}"
|
Reference in New Issue
Block a user