done exrcises
This commit is contained in:
@ -40,9 +40,7 @@
|
||||
|
||||
## Übungsaufgaben
|
||||
|
||||
### Annotations
|
||||
|
||||
#### [Primes](./src/primes.py)
|
||||
### [Primes](./src/primes.py)
|
||||
|
||||
Schreibe eine Funktion `prime_factorization` die eine Ganzzahl `n` entgegen nimmt und alle Primfaktoren berrechnet und die gegebene Zahl `n` in einen Paar mit den Primfaktoren als Liste zurückgibt. Denkt dabei an die richtigen Type Annotations
|
||||
|
||||
@ -51,6 +49,77 @@ def prime_factorization(n):
|
||||
pass
|
||||
```
|
||||
|
||||
#### [Dataclass](./src/data_classes.py)
|
||||
### [Dataclass](./src/data_classes.py)
|
||||
|
||||
Schreiben Sie eine Datenklasse `Fraction` (Bruch), beachten Sie dabei die Type Annotations. Ein Bruch besteht aus einem `divident` und einem `divisor`.
|
||||
|
||||
```python
|
||||
from dataclasses import dataclass
|
||||
|
||||
|
||||
@dataclass
|
||||
class Fraction:
|
||||
pass
|
||||
```
|
||||
|
||||
Nun modellieren wir Hilfsmethoden für unsere Datenklassen, die uns später bei der Logik von Brüchen helfen
|
||||
|
||||
```python
|
||||
# the greatest common divisor of two numbers `a`, `b`
|
||||
def gcd(a, b):
|
||||
pass
|
||||
|
||||
# this shortens a fraction to its most reduced representation
|
||||
def shorten_fraction(fraction):
|
||||
pass
|
||||
```
|
||||
|
||||
Abschließend modellieren wir nun auch noch das Verhalten von Brüchen indem wir Methoden direkt in der Datenklasse erstellen. Type Annotations!
|
||||
|
||||
```python
|
||||
# Multiplication of two fractions
|
||||
# `Fraction(1 / 2) * Fraction(2 / 6) -> Fraction(1, 6)`
|
||||
# Extra: make it possible to multiply `int` with a fraction
|
||||
# `Fraction(1 / 2) * 2 -> Fraction(1 / 4)`
|
||||
def __mul__(self, o):
|
||||
pass
|
||||
|
||||
# The division of two fraction
|
||||
# `Fraction(1 / 2) / Fraction(2 / 6) -> Fraction(3, 2)`
|
||||
# Extra: make it possible to divide `int` with a fraction
|
||||
# `Fraction(1 / 4) / 2 -> Fraction(1 / 2)`
|
||||
def __truediv__(self, o):
|
||||
pass
|
||||
|
||||
# The negative of a fraction
|
||||
# `-Fraction(1 / 2) -> Fraction(-1 / 2)`
|
||||
def __neg__(self):
|
||||
pass
|
||||
|
||||
# The addition of two fractions
|
||||
# `Fraction(1 / 4) + Fraction(2 / 8) -> Fraction(1 / 2)`
|
||||
# Extra: make it possible to add `int` with a fraction
|
||||
# `Fraction(1 / 4) + 1 -> Fraction(5 / 4)`
|
||||
def __add__(self, o):
|
||||
pass
|
||||
|
||||
# The subtraction of two fractions
|
||||
# `Fraction(1 / 2) - Fraction(1 / 4) -> Fraction(1 / 4)`
|
||||
# Extra: make it possible to subtract `int` with a fraction
|
||||
# `Fraction(5 / 2) - 1 -> Fraction(3 / 2)`
|
||||
def __sub__(self, o):
|
||||
pass
|
||||
|
||||
# The `equal`-function is == and should only care about reduced fractions
|
||||
# `Fraction(1 / 2) == Fraction(2 / 4)` is True
|
||||
def __eq__(self, o):
|
||||
pass
|
||||
|
||||
# The `not equal`-function is != and should only care about reduced fractions exactly as equal
|
||||
def __neq__(self, o):
|
||||
pass
|
||||
|
||||
# The str function should return this string `(divident / divisor)`
|
||||
def __str__(self):
|
||||
pass
|
||||
```
|
||||
|
Reference in New Issue
Block a user